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Abstract
This paper applies the Gappy proper orthogonal decomposition method, a recently-developed quantitative methodology for 
reconstructing unknown data, to archaeological problems and highlights  the benefits of the method for quantitative analysis 
within the field. There are three main advantages of the method over polynomial regression, which is most commonly used for 
missing data problems. First of  all, the method can be applied to problems where there are more attributes (variables) than 
complete samples (samples without missing data). Secondly, the method generates principal components (i.e. eigensamples) 
as  a byproduct  of its  prediction  algorithm; these principal components are useful for characterizing  data sets  and 
quantitatively assessing their dominant trends. Thirdly, the method employs  fewer ad hoc modelling choices compared with 
standard regression, as  it uses empirically-derived basis functions (the principal components) to make predictions. The Gappy 
proper orthogonal  decomposition method is applied to two case studies on Roman housing focusing  on the sites of Pompeii 
and Herculaneum. These case studies highlight the merits of the method and provide a new quantitative assessment of housing 
characteristics of the area, a subject which has been primarily analyzed impressionistically. The study concludes by offering 
extensions and future directions for applying the methodology.
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1. Introduction
Archaeology is, by definition, the study of the 

past through fragmentary material remains. When 
scholars generalize about the past, they essentially 
complete the fragments, stating implicitly or 
explicitly that their argument would hold true if the 
material record were indeed complete. While 
quantitative methods are becoming more 
commonplace in archaeological research today, 
generalizations and categorizations are still often 
made impressionistically and anecdotally without 
any quantitative assessment of the dominant trends 
involved.

In this paper, a new quantitative methodology 
known as Gappy proper orthogonal decomposition 
(POD) is introduced to address these shortcomings. 
This method, which has received recent attention in 
the machine learning and numerical analysis 
communities, fills in missing data by first 
computing statistical trends in the data, and then 
using these trends to fill in the corresponding gaps. 
Thus, this multidisciplinary study aims to leverage 
this new engineering tool to develop fresh insights 
into archaeological problems.

Archaeological research into housing practices is 
important because it provides information about the 
economic well-being and cultural values of a 
population. Studies on Roman housing, however, 

have exemplified the impressionistic and non-
quantitative methodologies described above. 
Scholars have identified numerous housing styles 
across the Roman empire primarily by choosing 
several archetypal examples with little or no 
accompanying statistical analysis (BARTON (ED.) 
1996, ELLIS 2000, MCKAY 1975). 

This paper uses Gappy POD to address these 
shortcomings of traditional scholarship on Roman 
housing. Two case studies are undertaken in which 
the number of attributes (i.e. variables) and 
complete samples (i.e.  samples with no missing 
attributes) differ greatly. First, the principal 
components of the data set are statistically 
determined for the well-preserved towns of Pompeii 
and Herculaneum. The principal components are 
then used to quantitatively identify the dominant 
characteristics of the attributes. Finally, these trends 
are used to reconstruct the gaps in partially 
excavated or poorly preserved houses.  Pompeii and 
Herculaneum were specifically chosen for this study 
because the completeness of their data enables 
comparing the predicted values to the actual values.

The paper proceeds by first discussing the Gappy 
POD requirements and methodology. It then 
highlights benefits of the method over standard 
regression techniques. Next,  it uses housing 
attributes at Pompeii and Herculaneum as case 
studies to show the efficacy in using Gappy POD to 

Computer Applications and Quantitative Methods in Archaeology - CAA’2010 
Fco. Javier Melero & Pedro Cano (Editors)

CAA’ 2010 - Fusion of Cultures
Granada, Spain



reconstruct fragmentary data. Finally, alternative 
potential archaeological applications for Gappy 
POD are discussed as possible avenues for further 
research. 

2. Gappy data problem formulation
We begin by mathematically formulating the 

problem at hand. Essentially, the problem is to 
estimate unknown or uncomputed entries (i.e. 
“gaps”) in vector-valued data.

The following terms will be used in the 
subsequent discussion.

Definition 1. A sample A is represented by an n-
vector, that is, a vector with n entries:

Definition 2. An attribute is an entry of the 
vector used to represent a sample. For example, if 
sample A is a house in Pompeii, then attribute 1 of 
sample A, denoted by , may correspond to the 

number of rooms in the house, and  may be 
the area of the house, etc.

Definition 3. A complete sample is a sample 
where all attributes are known. That is, sample A is 
complete if  is known for all .

Definition 4. A gappy sample is a sample where 
some attributes are unknown or missing. That is, 
sample A is gappy if  is unknown for some i.

The objective of gappy data reconstruction is to 
estimate the unknown attributes of gappy samples 
with a quantitative measure of uncertainty attached 
to the estimate.

While several methods exist in the literature to 
accomplish this task, one recently-developed 
method is particularly well-suited for the problem: 
Gappy POD. The next section describes this 
method.

3. Gappy POD
Gappy POD is a method for solving the gappy 

data problem that was introduced for the purpose of 
facial image reconstruction (EVERSON et al.1995). 
It has also been successfully used for aerodynamic 
flow field reconstruction (BUI-THANH et al. 2004, 
VENTURI et al. 2004, WILLCOX 2006), 
optimization (ROBINSON et al.  2006) and efficient 
numerical simulation of nonlinear systems (BOS et. 
al. 2004, CARLBERG et al. 2010).

The method requires both a collection of 
complete samples and some gappy samples whose 

unknown entries are to be estimated. The steps of 
the method are: 1) compute a set of “eigensamples” 
that best represent the complete samples, 2) 
reconstruct the gappy samples by least squares 
regression in one discrete-valued variable using 
these eigensamples as basis functions.
3.1. Eigensample computation

To build the eigensamples, m complete samples, 
denoted by  for ,  are first 
“rescaled” according to the expression

Here, 
 
is the sample mean and 

 is the sample variance, 

which serves as a scaling factor. This rescaling 
essentially puts all attributes, regardless of units and 
relative magnitudes, on the same playing field. The 
rescaled samples are then assembled into the 
complete sample matrix:

The method next computes the singular value 
decomposition (GOLUB and VAN LOAN, 1996), a 
common matrix decomposition, of this matrix:

Here,  is the matrix containing 

the left singular vectors ;  is a matrix with all 
zeros except for its diagonal containing the singular 
values , for ; and  is 

the matrix containing the right singular vectors .

Definition 5. The  eigensample is , the  
left singular vector of the complete sample matrix. 
In the literature, it is often referred to as the  
principal component of the data set. It constitutes 
the  best representation of the (scaled) complete 
samples in the following sense:

ui = arg min
u∈Si

m�

j=1

(u, x̄j)
�u�

where

 S
i = {u | �u� = 1, (u, uk) = 0, ∀k < i},

and � · � and (·, ·) are the Euclidean norm and inner 
product, respectively.

Often, the first  eigensamples are selected 
to represent the set. This approach to computing 
dominant modes is (equivalently) known as proper 
orthogonal decomposition, principal component 
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analysis, and the Karhunen-Loève transform in the 
literature.
3.2. Least-squares reconstruction

Once the eigensamples have been computed, the 
Gappy POD method uses them to estimate the 
missing entries of the gappy samples.  This is 
accomplished by solving a least squares regression 
problem. Denoting by  N (B) ⊂ {1, 2, . . . , n}  with 
|N (B)| = l  the l  known entries of gappy sample B, 

the least squares problem computes coefficients , 

 that satisfy the minimization problem

minimize
{a1,...,ap}

�
i∈N (B)

�
x̄i(B)−

p�
j=1

uj
iaj

�2

.
 

The expected value (mean) of the missing 
attributes , i ∈ {1, 2, . . . , n}\N (B)  can then 
be computed as

The variance of the estimate is

Since least-squares regression assumes a 
Gaussian distribution, the expected value and 
standard deviation can be used to quantify the 
uncertainty in the gappy prediction; that is, a 
confidence interval can be constructed.

Note that the least-squares minimization problem 
above is of the standard form minimize�Xa− y� , 
where X ∈ Rl×p  is simply the N (B)  rows 

of 
�
u1 · · · up

�
, which correspond to the known 

attributes of the gappy sample. This is depicted in 
Figure 1.

Figure 1: Least-squares reconstruction example 
with n = 7 , l = 4 , p = 3, and N (B) = {1, 4, 5, 7} .

4. Gappy POD v. standard regression
This method carries several advantages over 

standard regression methods in the context of gappy 
data reconstruction. By “standard regression,” we 
refer to the commonly-used supervised learning 
method which treats the known attributes as inputs 
and the unknown attributes as outputs; the approach 
uses the complete samples to construct a mapping 
from the inputs to the outputs using canonical 
mathematical basis functions such as polynomials.

First, Gappy POD can handle problems 
characterized by more known gappy attributes than 
full samples (p>n). Such problems arise in 
archaeology when there are a small number of well-
preserved sites, features, or artifacts, which could 
yield a large amount of information. In the ancient 
Roman world this is exemplified in the Campania 
region of Italy. The extraordinarily well-preserved 
sites of Pompeii and Herculaneum have been 
repeatedly used as prototypes for Roman urban 
layout and housing. In both of these cases the 
number of attributes measured, regarding either the 
urban fabric or domestic architecture, can easily 
exceed the number of complete samples. 

To see this advantage of Gappy POD, consider 
the associated least-squares problem, which has a 
unique solution if and only if the associated ( l × p ) 
matrix is “skinny” (i.e.  l ≥ p ) and has full column 
rank. The first of these conditions is satisfied if 
there are more known attributes than complete 
samples ( l ≥ m ), since m ≥ p  in this case. The 
second condition is difficult to ensure in the general 
case, as it depends on which attributes N (B)  are 
known. Thus, it is likely that the Gappy POD 
method will generate a unique solution when there 
are more known gappy attributes than full samples. 
On the other hand, if (say) first-order polynomials 
are chosen as basis functions with standard 
regression, the associated least squares matrix is of 
dimension ( n× p + 1 ).  The matrix will only be 
“skinny” if n ≥ p + 1 , which is not possible for 
problems with p > n . In order to compute a unique 
solution, some basis functions must be removed; 
this decision is inherently ad hoc.

Secondly,  Gappy POD requires fewer arbitrary 
choices than standard regression. In standard 
regression, the basis functions are chosen 
(arbitrarily) to be “typical” mathematical functions. 
This choice is made a priori,  and there is generally 
no reason to believe that the choice reflects the 
actual trends in the data (why,  for example, are 
polynomials a better choice than radial basis 
functions?). On the other hand, Gappy POD 
employs the empirically-derived eigensamples to 
make predictions. Not only are these functions not 
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arbitrarily-chosen, they are optimal in terms of 
representing the complete samples.

Finally, the eigensamples used by the method are 
interesting in their own right: They can be used to 
mathematically characterize the population. For 
example, assume that the samples correspond to 
excavated houses in Pompeii, and the attributes are 
the number of rooms and square footage. In this 
case, the first eigensample describes (roughly) the 
ratio of rooms to total area that is most likely to be 
encountered in this region.

Clearly, there are many problems in archaeology 
that fall under the umbrella of data reconstruction. 
The Gappy POD method is very well-suited to 
tackle many of these problems. The next section 
describes one such problem and presents some 
preliminary results.

5. Case studies
Pompeii and Herculaneum form the basis of 

almost every traditional account of housing in 
Roman Italy (BARTON (ED.) 1996, CLARKE 
1991, ELLIS 2000). The “Romanness” of these 
houses is identified through their constituent parts: 
the atrium, the peristyle,  the cubiculum, the 
triclinium, etc. Ellis defines the typical Roman 
house as, “one with a large richly decorated 
reception room opening onto a central colonnaded 
courtyard or peristyle (ELLIS 2000, 10).” These 
accounts largely lack statistical analysis of the 
composition and location of the Pompeian houses.

One good attempt at a quantitative study of 
houses at Pompeii and Herculaneum was done by 
Wallace-Hadrill (WALLACE-HADRILL 1994). His 
study focused primarily on the social structure of 
the houses, showing how layout and decoration 
gave cues as to the public / private, grand / humble 
nature of particular rooms. Wallace-Hadrill also 
quantified certain aspects of the houses he surveyed. 
His statistical analysis included the size of the 
houses, the number of rooms they contained, and 
the number of rooms decorated. Wallace-Hadrill 
even went on to correlate house size with 
decoration, yet his correlations never moved beyond 
two variables.

This paper considers two case studies with 
different parameters. Both are concerned with 
Roman housing in Campania and use houses from 
Pompeii and Herculaneum to build the data sets. 
The first case study measures and assesses the 
relationship between four attributes; it draws on 
over 120 complete samples. The second case study 
increases the number of measured attributes to ten, 
but only uses seven complete samples to build the 
model. Both scenarios are common occurrences 
within archaeological research, but the latter is 
rarely undertaken due to the dimensionality 
limitations of standard regression.

5.1. Case study 1: Pompeii and Herculaneum
This case study uses Wallace-Hadrill’s three 

categories of quantified data, along with a new 
fourth variable of ‘distance to the forum.’ Thus the 
four attributes assessed in this case study are: (1) 
house size, which may serve as a proxy for the 
economic well-being of the family,  (2) number of 
rooms, a proxy for differentiation within the house, 
(3) number of decorated rooms, another proxy for 
wealth, and (4) distance to the forum, which may 
relate to the status of the owner (MORRIS 2005, 
WALLACE-HADRILL 1994).  The case study then 
applies Gappy POD in order to identify the 
dominant trends of housing at Pompeii,  where 93 
houses were considered, and Herculaneum, where 
29 houses were considered. These dominant trends 
al low us to (a) quant i ta t ively represent 
characteristics of houses at the respective sites, and 
(b) reconstruct gaps in future data. Because of the 
unique level of preservation at these sites and the 
presence/absence nature of the decoration analysis, 
it can be assumed that the architectural and 
decorative remains at these sites represent a fairly 
full and accurate account of what was present in 
antiquity.

First, we computed the eigensamples of both the 
Herculaneum and Pompeii data sets. For Pompeii, 
the sample mean is µ =[409.6, 12,2, 5.0, 111.0]T and 
the first eigensample is [-0.9982, -0.0184, -0.0139, 
-0.0053] T, where the entries of these vectors 
correspond to the housing attributes considered. 
Thus, the four attributes are related among the 
Pompeian houses primarily in the following way:

That is,  for most houses in Pompeii, there is a 
value of c that very closely describes it. For 
example, for house VI.15.1/27, the optimal value of 
c=-676.2 yields 1084.6 m2 for the area, 24.6 rooms, 
14.4 decorated rooms, and 73.7 m distance from the 
forum; these are very close to its true values of 1100 
m2, 24, 15, and 79 m , respectively. For 
Herculaneum, a similar, yet distinct trend emerges 
with the following dominant relationship:

These rescaled eigensamples for Pompeii and 
Herculaneum are graphically depicted in Figures 2 
and 3.
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Figure 2: Data points and rescaled eigensamples 
projected on the x2 − x1 plane
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Figure 3: Data points and rescaled eigensamples 
projected on the x4 − x1 plane

A compar i son be tween these resca led 
eigensamples reveals the similarity between housing 
characteristics of the two towns.  Pompeian houses 
tend to be slightly larger on average (by about 100 
m2), but the number of rooms and decorated rooms 
are almost identical (roughly 12 and 5, 
respectively).  These three attributes trend very 
similarly as well for both Pompeii and 
Herculaneum, with both the total number of rooms 
and the number of decorated rooms increasing as 
house size increases (see Figure 2).  The most 
prominent contrast lies in the relationship between 
house size and proximity to the forum. In Pompeii, 
as one moves away from the forum houses in the 
data set tend to get smaller, suggesting wealthy 
citizens chose to live near the town center. 
Herculaneum displays the opposite trend, where 
houses tend to be larger the further they are from 
the forum (see Figure 3).  This observation 
constitutes an interesting topic for future 
investigation.

Next,  we used these eigensamples to make 
predictions for gappy samples. In the first set of 
experiments, we used the first eigensample from the 
Herculaneum data set to make predictions for gappy 
samples of the Herculaneum data set. To generate 
each gappy sample, one house was removed from 
the Herculaneum data set and one of its attributes 
was treated as unknown. The Gappy POD 
procedure outlined in Section 3.2 was then applied 
to compute a 99% confidence interval for this 
“missing” value. It was then determined whether or 
not the true value of the removed attribute was 
contained in the Gappy POD confidence interval. 
As one illustrative example, for the Casa del 
Papirio dipinto, the number of rooms was removed 
as though it was a natural gap in the data. Gappy 
POD predicted with 99% confidence that there 
would be between 7.4 and 10 rooms; the true value 
of 8 indeed falls in this interval. 

This experiment was run for all attributes and all 
houses in the Herculaneum set.  Table 1 compares 
the success rates (i.e. percentage of correct 
confidence intervals) achieved by Gappy POD with 
those obtained by standard regression using both 
second- and third-order polynomials.

Method x1  x2  x3  x4 

Gappy POD 55.17% 62.07% 48.28% 20.69%

Regression 
(2nd order) 62.07% 55.17% 48.28% 48.27%

Regression 
(3rd order) 55.17% 48.27% 37.93% 37.93%

Table 1: Success rates for Herculaneum as the 
complete set for predicting Herculaneum gappy 
samples.

Table 1 indicates that Gappy POD performs 
similarly to standard regression in this case. Here, it 
generates a “correct” confidence interval more often 
when the second attribute is missing, but is less 
successful when the fourth attribute is missing. 

The first Herculaneum eigensample was also used 
to predict missing attributes for houses in Pompeii. 
The gappy sample generation procedure is identical 
to that used above. The number of decorated rooms 
in house VI.14.25 provides an example of the 
Gappy POD predictions. In this case, Gappy POD 
predicted its value to be between 2.2 and 3.6 with 
99% confidence. Its true value of 3 falls in this 
interval.  Also, the distance to the forum for house 
VI.14.34 was correctly predicted to be between 71.4 
m and 96.8 m; its actual value is 89 m.

Again, this experiment was run for all attributes 
and houses in Pompeii. The associated success rates 
are provided in Table 2. As before, Gappy POD 
exhibits similar performance to standard regression.
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Method x1 x2 x3 x4

Gappy 
POD 47.31% 52.69% 40.86% 19.35%

Regression 
(2nd order) 60.22% 44.09% 56.99% 40.86%

Regression 
(3rd order) 41.93% 40.86% 53.76% 43.01%

Table 2: Success rates for Herculaneum as the 
complete set for predicting Pompeii gappy samples.

These results highlight several advantages of 
Gappy POD. First, the method does not require as 
many arbitrary modeling choices as standard 
regression. For example, in the above experiments, 
2nd-order polynomial basis functions generated 
more accurate confidence intervals than 3rd-order 
polynomial basis functions in some cases, but not 
others. It is not apparent a priori which basis 
functions are best to use.

Secondly,  the eigensamples generated by Gappy 
POD are interesting in their own right. In the study 
above, they were a useful tool to quantitatively 
compare and contrast the housing characteristics of 
the two sites.

Finally, the study illustrates that eigensamples 
generated from one site (e.g. Herculaneum) can be 
employed to predict missing values from other sites 
(e.g. Pompeii). In the future, this implies that well-
preserved sites could be used to accurately predict 
unknown information of unexcavated or poorly 
preserved sites.
5.2. Case study 2: Regio I, Pompeii

The goal of the second case study, in addition to 
providing a more quantitative analysis of housing 
characteristics at Pompeii, is to simulate a 
circumstance where there are more known attributes 
than complete samples. This would prohibit the 
(straightforward) use of standard regression due to 
the dimensionality limitations discussed in Section 
4. These situations arise primarily at less well-
preserved or more sparsely excavated sites, where 
there may only be a small number of complete 
samples. However, Pompeii is used again for this 
case study because it allows for a comparison 
between the values predicted by Gappy POD and 
the actual values. Here seven complete samples 
from Pompeii Regio I, Insula 11 were used to 
compute the eigensamples; we used the first of 
these eigensamples to predict the missing values for 
all houses from Regio I, Insulae 6–12.

A total of ten attributes are considered in this case 
study. The first four are the same as the previous 
study: (1) house size, (2) the number of rooms, (3) 
the number of decorated rooms, and (4) the distance 
to the forum. These are combined with six new 

attributes: (5) the primacy of the house within the 
insula, which measures how the size of the house 
compares to its neighbors,  (6) the distance to the 
nearest fountain, which measures proximity to a 
water source, (7) the distance to the nearest brothel, 
a proxy for proximity to deviant locales, (8) 
courtyard size, measuring the open air space within 
the house, (9) the number of colonnades within the 
courtyard, a possible status marker, and (10) the 
number of attached shops, a measure for proximate 
economic activity. The majority of these data is 
again drawn from Wallace-Hadrill’s House and 
Society in Pompeii and Herculaneum (WALLACE-
HADRILL 1994). The data for fountain and brothel 
locations originates from Laurence’s Roman 
Pompeii: Space and Society (LAURENCE 1996, 
43, 66).  The data set here is limited to Pompeii, 
Regio I, Insulae 6 through 12.

The experiment was run in a similar fashion to the 
previous study. That is, gappy samples were 
generated by removing one house from the 
Pompeian set and considering one of its attributes to 
be unknown.

The successful prediction rates for the ten 
attributes are: (1) 75.8%, (2) 51.5%, (3) 36.4%, (4) 
45.5%, (5) 48.5%, (6) 21.2%, (7) 54.5%, (8) 60.6%, 
(9) 45.5%, (10) 39.4%. These rates appear to be 
relatively low in some cases, which could be 
attributed to a lack of correlation between attributes. 
However, we reiterate that standard regression 
cannot be applied to this problem in a 
straightforward manner; thus, the Gappy POD 
method enables results to be obtained for this 
problem without making ad hoc decisions regarding 
the omission of basis functions.

6. Conclusions and future work
This work has applied Gappy POD, a recently-

developed methodology for reconstructing gappy 
data, to archeological problems. The three main 
advantages of the method over standard regression 
have been detailed.  These include its applicability to 
previously difficult problems (i.e. more known 
attributes than complete samples), the utility of the 
eigensamples generated by the method, and the lack 
of ad hoc modeling decisions.  Two case studies on 
Roman housing illustrated these benefits.

The potential archaeological applications of the 
Gappy POD method range far beyond what has 
been done here. For instance, it is possible to extend 
the geographical scope of housing research to 
include other areas of Italy and the Roman empire at 
large. This will allow for the comparison of 
statistical trends in regional housing. We may then 
create housing typologies using, at least in part, 
quantitative data, which will facilitate cross-cultural 
comparison. Furthermore, Gappy POD may be used 
to predict trends on a larger scale. Assessing the 
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size,  layout, average house size, building types, and 
geographical location of cities, would allow us to 
establish regional urban trends as well as predict 
urban composition for partially excavated towns. 
Finally, this method could be used in order to 
reconstruct the iconography of ceramic vessels (e.g., 
Greek vases),  in much the same way that this 
method was originally employed in image 
reconstruction (EVERSON 1995). This has the 
potential to save both time and money by reducing 
the need for on-site ceramic analysis. 

Additionally, the method could be applied to 
cases where no complete samples are available. 
This arises when individual sites tend to have a 
unique combination of excavated attributes. The 
procedure outlined in Section 3 of EVERSON, 1995 
could be applied to such problems.

Overall, Gappy POD provides an innovative 
c o m p u t e r - b a s e d m e t h o d t h r o u g h w h i c h 
archaeologists can generate new quantitative 
answers to traditional archaeological questions.
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